tact distances involving the C atoms of the methyl groups.

In Table 2 the displacements of the ligand atoms from the least-squares plane calculated considering only the aromatic part of the molecule are reported. Here the system approaches planarity to a degree (highest displacement 0.022 Å) which was only found in the naphthyridine molecules of the octacoordinated complex [Fe(NN)₄](ClO₄)₂ (Singh, Clearfield & Bernal, 1971); in all the other 1,8-naphthyridine complexes whose structures have been reported, and even in the free molecule (Clearfield, Sims & Singh, 1972), the displacements are very much higher. Finally it is worth noting that the plane containing the ligand molecule is almost orthogonal to the coordination plane defined by the Cu, Cl and N atoms, the dihedral angle being 87.4° .

References

- CLEARFIELD, A., SIMS, H. J. & SINGH, P. (1972). Acta Cryst. B28, 350-355.
- DE MEESTER, P. & SKAPSKI, A. C. (1973). J. Chem. Soc. Dalton, pp. 424-427.
- ENWALL, E. L. & EMERSON, K. (1968). Amer. Cryst. Assoc. Meeting, Tucson, Arizona. Abstract E6.
- MEALLI, C., ARCUS, S. S., WILKINSON, J. L., MARKS, T. J. & IBERS, J. A. (1976). J. Amer. Chem. Soc. 98, 711–718.
- MEALLI, C., MIDOLLINI, S. & SACCONI, L. (1975). Inorg. Chem. 14, 2513–2521.
- NYBURG, S. C. (1974). Acta Cryst. B30, 251-253.
- SACCONI, L., MEALLI, C. & GATTESCHI, D. (1974). Inorg. Chem. 13, 1985–1991.
- SACCONI, L., MEALLI, C. & GATTESCHI, D. (1976). Inorg. Chem. 15, 2774–2778.
- SINGH, P., CLEARFIELD, A. & BERNAL, I. (1971). J. Coord. Chem. 1, 29–37.

Acta Cryst. (1977). B33, 713-716

Electron-Density Distributions in Crystals of γ -Fe₂SiO₄ and γ -Co₂SiO₄

By F. MARUMO AND M. ISOBE

Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152, Japan

AND S. AKIMOTO

The Institute for Solid State Physics, The University of Tokyo, Roppongi 7, Minato-ku, Tokyo 106, Japan

(Received 22 June 1976; accepted 3 August 1976)

Electron-density distributions in crystals of γ -Fe₂SiO₄ and γ -Co₂SiO₄ have been experimentally determined from single-crystal X-ray diffraction data. Evidence for trigonally deformed distributions of 3*d* electrons around the transition-metal atoms in the compounds was observed on the final difference Fourier maps. The residual electron-density distribution for γ -Fe₂SiO₄ is significantly different from that for γ -Ni₂SiO₄, in conformity with the difference in the number of 3*d* electrons. The difference Fourier map of γ -Co₂SiO₄ has an intermediate feature between those of γ -Ni₂SiO₄ and γ -Fe₂SiO₄. Residual electron densities were also observed on the Si–O bonds.

Introduction

Evidence for the aspherical distribution of 3*d* electrons around the transition-metal atoms in crystals of $[Co(NH_3)_6][Co(CN)_6]$ (Iwata & Saito, 1973) and *y*-Ni₂SiO₄ (Marumo, Isobe, Saito, Yagi & Akimoto, 1974) has been obtained by single-crystal X-ray diffraction. The transition-metal atoms are octahedrally coordinated. The two independent Co^{III} atoms in the former crystal are in the low-spin state, and the six 3*d* electrons occupy the t_{2g} orbitals in the ground state. The distribution of the 3*d* electrons in the t_{2g} orbitals has maxima on the eight threefold rotation axes of the coordination octahedron. Residual densities indicating such an aspherical distribution were clearly observed on the difference Fourier maps of $[Co(NH_3)_6]$ - $[Co(CN)_6]$. In the case of γ -NiSiO₄, the Ni²⁺ cation has eight 3d electrons, six of which are in the t_{2g} orbitals, and two in the e_g orbitals in the ground state. Since the sum of the electron-density distributions of three 3d electrons in the t_{2g} and two in the e_g orbitals should be approximately spherical, the electron-density distribution around the Ni²⁺ cation is expected to show an asphericity similar to those observed in $[Co(NH_3)_6]$ - $[Co(CN)_6]$. In fact, eight residual peaks were observed on the body-diagonals with respect to the six Ni–O bonds in the difference Fourier map of γ -Ni₂SiO₄.

It is of interest to examine the electron-density distributions around transition-metal atoms with different numbers of 3*d* electrons in a similar crystal field. This paper describes the results of an investigation into the electron-density distributions around the Fe²⁺ and Co²⁺ cations in γ -Fe₂SiO₄ and γ -Co₂SiO₄.

Experimental

The specimens used were synthesized from the respective metal orthosilicates of the olivine form with the aid of a tetrahedral-anvil-type high-pressure apparatus. The details are given in a previous report (Yagi, Marumo & Akimoto, 1974). The cell dimension of y-Fe₂SiO₄ was determined from powder-diffraction data and that of y-Co₂SiO₄ from ten 2 θ values obtained on a four-circle diffractometer. The crystal data are given in Table 1.

Crystals for intensity measurements were ground into spheres. The sizes and other experimental conditions are given in Table 2. Intensities were collected on a Rigaku automated four-circle diffractometer with Mo $K\alpha$ radiation monochromated with graphite. Background counts were measured at both ends of the scan range. The counting time at each end was varied from 15 to 450 s, according to the peak counts and the scan time. When the peak intensity exceeded 5000 counts s⁻¹, Ni-foil attenuators were inserted to avoid a

Table 1. Crystal data of γ -Fe₂SiO₄ and γ -Co₂SiO₄

Snace group

 γ -Fe₂SiO₄

Edam

counting loss. Scanning was repeated up to 10 times for each reflexion with $\sigma(|F_o|) > 0.0025|F_o|$, where $\sigma(|F_o|)$ is the estimated standard deviation of the observed structure amplitude based on counting statistics. The measurements were carried out over two symmetrically related regions of reciprocal space in each crystal. Reflexions with $|F_o| > 3\sigma(|F_o|)$ were considered to be observed. In the practical calculations, however, only the reflexions in one independent region were adopted. The other sets of reflexions were used to check accidental errors in the data. The intensities were corrected for Lorentz, polarization and absorption factors. Corrections for the secondary-extinction effects were carried out in the course of the structure refinements.

The crystals were known to have normal-spinel structures (Morimoto, Tokonami, Watanabe & Koto, 1974; Yagi *et al.*, 1974). Refinements of the structures were carried out with the full-matrix least-squares program *LINUS* (Coppens & Hamilton, 1970); isotropic secondary extinctions were assumed. Partial disorders between the transition-metal and Si atoms were taken into account, and the populations were included in the variables to be refined (with the constraint of electrical neutrality). The population obtained [0.024(4)] for Fe²⁺ ions at the tetrahedral site suggested the presence of partial disorder between Fe and Si atoms in *y*-Fe₂SiO₄, while the corresponding value of 0.014 (5) for Co²⁺ cations indicated that the structure of *y*-Co₂SiO₄ is practically of the ideal normal-spinel

Table 3. The final parameters and R values for γ -Fe₂SiO₄ and γ -Co₂SiO₄

The values of the positional and thermal parameters are multiplied by 10^5 and those of populations by 10^3 . The temperature factors are in the form:

$$\exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)].$$

. .

....

. . .

a(A)	8.234 (1) 8 4.85 108.62	8 · 140 (1) 8 5 · 17 130 · 02		model		model
$D_x(g \text{ cm}^{-3}) = \mu(\text{Mo } K\alpha) (\text{cm}^{-1})$			Tetrahedral sites	γ -Fe ₂ SiO ₄	γ -Co ₂ SiO ₄	γ -Co ₂ SiO ₄
			Population $x(=v=z)$	(Fe 24 (4))	Si 986 Co 14 (5)) <u> </u>
Table 2. Experimental conditions			$\beta_{11}(=\beta_{22} = \beta_{33}) \\ \beta_{12}(=\beta_{13} = \beta_{23})$	137 (4) 0	122 (5) 0) 111(3) 0
	γ-Fe₂SiO₄	γ-Co₂SiO₄	Octahedral sites			
Diameter of specimen Radiation	0∙090 mm Mo Ka	0∙075 mm Mo Ka	Population	(Fe 988 Si 12	Co 993 Si 7	Co 1000
Monochromator $2\theta_{max}$	Graphite 135°	Graphite 135°	$x(=y = z) \beta_{11}(=\beta_{22} = \beta_{33})$	62500 169 (1)	62500 151 (1)	62500 152 (1)
Scan technique Scan speed Scan width	$\frac{\omega - 2\theta}{2^{\circ} \min^{-1}}$	$\omega - 2\theta$ 2° min ⁻¹ 1.48 + 1.08 ton θ	$\beta_{12}(=\beta_{13}=\beta_{23})$ Oxygen sites	-3 (1)	-8 (1)	-8 (1)
Maximum number of repetitions	10 + 10 tailo	10	x(=y = z) $\beta_{11}(=\beta_{22} = \beta_{33})$	36588 (7) 172 (3)	36728 (8) 154 (3)	36727 (8) 153 (3)
Criterion to terminate repetition	$\sigma(F)/ F \le 0.0025$	$\sigma(F)/ F \le 0.0025$	$\beta_{12}(=\beta_{13}=\beta_{23})$ $G(\times 10^7)$	-14 (3) 31 (3)	-10 (4) 102 (5)	-10(4) 103(5)
Number of observed reflexions	217	202	R Rw	0.0138	0.0150 0.0149	0.0154 0.0152

y-Co₂SiO₄

Ed2

type. Therefore, the structure of γ -Co₂SiO₄ was also refined on the ordered model.

The final atomic parameters are given in Table 3, together with the conventional and weighted R values. The atomic scattering factors and dispersion correction factors for the Fe²⁺, Co²⁺ and Si⁴⁺ ions were taken from *International Tables for X-ray Crystallography* (1968). The scattering factors used for O²⁻ ions were those given by Tokonami (1965). The dispersion correction was ignored for O²⁻ ions. Unit weight was given to all the observed reflexions in the least-squares calculations.*

Results and discussion

All the atomic parameters are in good agreement with those reported previously (Morimoto *et al.*, 1974; Yagi *et al.*, 1974). The electron-density distributions were examined by synthesizing difference Fourier maps. For γ -Co₂SiO₄, the synthesis was carried out with the final parameters obtained on the assumption of an ideal normal-spinel structure, whereas that for γ -Fe₂SiO₂ was performed with parameters based on the partial-disorder model. Sections of the maps of both crystals through the plane y = x are shown in Figs. 1 and 2. The transition-metal, Si and O atoms appear on these sections. In contrast to y-Ni₂SiO₄ (Marumo *et al.*, 1974), where eight peaks were observed around the Ni²⁺ ion in three dimensions, only two large peaks exist around the Fe²⁺ ion, as seen in Fig. 1. These peaks are on the threefold rotation axis running through the cation site. The distance is about 0.046 Å from the Fe²⁺ ion and the peak height is about 1.2 e Å⁻³.

The Fe²⁺ ion is known to be in the high-spin state in y-Fe₂SiO₄ with six 3d electrons. The cation is octahedrally surrounded by six O²⁻ anions, but the exact symmetry of the coordination polyhedron is not cubic but trigonal, because of the flattening of the polyhedron along the direction of the threefold rotation axis. Therefore, the triply degenerate t_{2g} level is split into one singlet and one twofold degenerate level. From the shape of the coordination octahedron, the singlet level is presumed to be lower than the twofold degenerate level. Accordingly five out of the six 3d electrons occupy each of the five 3d orbitals, and the remaining one occupies the singlet level in the ground state. The observed peaks seem to originate in this trigonally deformed distribution of 3d electrons.

In the difference Fourier map of γ -Co₂SiO₄, eight peaks are observed around the Co²⁺ ion, as in the case of γ -Ni₂SiO₄, four being on the section given in Fig. 2. However, the peaks on the threefold rotation axis (1.0 e Å⁻³ in height) are much larger than the remaining six

Fig. 1. The section of the difference Fourier map of γ -Fe₂SiO₄ through the plane y = x. Contours are at intervals of 0.4 e Å⁻³. Zero contours are in broken lines, and negative contours dotted.

Fig. 2. The section of the difference Fourier map of γ -Co₂SiO₄ through the plane y = x. Contours are at intervals of 0.4 e Å⁻³. Zero contours are in broken lines, and negative contours dotted.

^{*} A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32093 (5 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

716

(0.8 e Å⁻³), giving a feature just intermediate between those in the difference Fourier maps of γ -Fe₂SiO₄ and γ -Ni₂SiO₄. This trend in the density distributions of 3d electrons is parallel to the degree of flattening of the coordination octahedra. Namely, the Fe²⁺ ion, which only gives a pair of residual densities on the threefold rotation axis, has the most flattened coordination octahedron among those around the three kinds of cations. The distances of the peaks from the Co²⁺ site are also about 0.46 Å.

Residual densities are observed on the Si–O bonds in both γ -Fe₂SiO₄ and γ -Co₂SiO₄. A common feature is that the positive regions are guitar-shaped with double maxima.

The authors are very grateful to Professor Yoshihiko Saito of the University of Tokyo for his interest in this work and permission to use the diffractometer. Part of the cost of this work was defrayed by a grant from the Ministry of Education of the Japanese Government.

References

- COPPENS, P. & HAMILTON, W. C. (1970). Acta Cryst. A26, 71–83.
- International Tables for X-ray Crystallography (1968). Vol. III. Birmingham: Kynoch Press.
- IWATA, M. & SAITO, Y. (1973). Acta Cryst. B29, 822-832.
- MARUMO, F., ISOBE, M., SAITO, Y., YAGI, T. & AKIMOTO, S. (1974). Acta Cryst. B30, 1904–1906.
- Morimoto, N., Tokonami, M., Watanabe, M. & Koto, K. (1974). *Amer. Min.* **59**, 475–485.
- Токонамі, М. (1965). Acta Cryst. 19, 486.
- YAGI, T., MARUMO, F. & AKIMOTO, S. (1974). Amer. Min. 59, 486–490.

Acta Cryst. (1977). B33, 716-722

The Crystal Structure and Absolute Configuration of Condelphine Hydroiodide

BY S. W. PELLETIER, WILSON H. DE CAMP, D. L. HERALD JR AND S. W. PAGE

Natural Products Laboratory, Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA

AND M. GARY NEWTON

Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA

(Received 12 April 1976; accepted 25 June 1976)

Condelphine, a C_{19} diterpene alkaloid isolated from *Delphinium denudatum*, has been investigated by an Xray crystal structure determination of its hydroiodide derivative, $C_{25}H_{39}NO_6$. HI. The crystals are triclinic, P1, a = 9.3404 (9), b = 17.442 (2), c = 9.0953 (8) Å, $\alpha = 94.891$ (9), $\beta = 118.891$ (7), $\gamma = 86.594$ (9)°. The unit cell contains two independent molecules, related by approximate *I*-centering. The structure has been refined to R = 0.100, $R_w = 0.111$, based on 3828 observed reflections. The absolute configuration is established as 1S,4S,5R,7S,8S,9R,10R,11S,13R,14S,16S,17R, by examination of Friedel pairs of reflections. The alkaloid is a member of the aconitine family, and bears 1α -hydroxy, 8β -hydroxy, 14α -acetyl, 16β -methoxy and *N*-ethyl substituents. Intramolecular hydrogen bonding between the protonated N atom and the 1α hydroxy group stabilizes ring A in a boat form. The two independent molecules have no significant contacts with each other. Because condelphine has been correlated with isotalatizidine and talatizidine, this work confirms the molecular structure and establishes the absolute configuration of the latter two alkaloids as well.

Introduction

The alkaloids of the C_{19} diterpene family are based on a skeleton which is heavily substituted with oxygenated groups. The structures of these alkaloids have generally been elucidated on the basis of chemical correlations, supported by crystallographic and spectral studies. Condelphine (I) is a member of this family which has been isolated from both *Delphinium denudatum*

